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Abstract- This paper describes the interaction between the 

kinematic model of the AUV MARES, and the measurement and 

observation of the environment through images obtained with 

the sonar use. Three types of Sonar are discussed in this paper; 

there are forward-look, side scan and multibeam. But the sonar 

used to develop this work was the side scan sonar. The type of 

observations and characteristics of the environment provided by 

the sonar are described here. The method, which connects the 

sensory part of the vehicle with the observations of the sonar, 

was the Kalman filter (EKF). In this paper, are presented two 

simulations of filters for two different characteristics. Both 

filters estimate the characteristics of natural landmarks, creating 

an environment map, but both of them consider different states 

of the vehicle. Results of the simulation are obtained. The 

features that are considered are an underwater pipe on the floor 

and a wall. It also generated a control for the vehicle that 

provides the capacity to move along the feature/landmark from 

a reference distance. 

I. INTRODUCTION 

Some vehicles, such as ROVs (Remotely Operated 

Vehicles) are not able to navigate without power cable. Other 

vehicles such as AUVs (Autonomous Underwater Vehicles) 

are not able to navigate without the help of methods like 

absolute location, such as GPS (Global Positioning Systems) 
or acoustic beacons. In fact these vehicles have a certain 

degree of autonomy, but cannot be considered as truly 

autonomous [1],[2],[3],[4] and [5]. 

The true definition of autonomy is the capacity that the 

vehicle has to move and locate in the world, independently, 

with the maximum certainty of localization and without 

environment preparation [6]. One of the fundamental 

characteristics of autonomy is also the capacity of the vehicle 

moving without bounds, often introduced by methods such as 

acoustic beacons, which have a maximum range. 

It is this definition of autonomy that is the opportunity of 
this work. The fundamental aim is to equip the AUV MARES 

[3] with real autonomy, by using side scan sonar, allowing it 

to navigate relative to landmarks in the marine environment, 

such as pipes and walls. 

The importance of providing higher degree of autonomy to 

vehicles appears because the use of AUVs has had rapid 

growth on civil life, military or services in recent years. 

In section II sensors and navigation methods problem are 

described. The third section describes sonar data, and a 

computational method to extract the features, while in the 

fourth section two navigation filters for two different features 
are presented. In section V AUV guidance and control are 

described. In section VI simulation results are presented. 

Finally in section VII project limitation are described.  

II. UNDERWATER VEHICLES AUTONOMY 

The autonomy in ocean robotic is divided into the 

following three levels, [5]: 

Self-energy: Provide a vehicle own sources of energy.  

-Self-navigation: represents the capacity of the vehicle to 

navigate accurately with a low error of estimation. This type 

of autonomy is the fundamental core of this paper.  
-Autonomy of decision: this is the ability to decide and act in 

various scenarios. 

A. Evolution of Autonomy in Underwater Robotics 

Different sensors and techniques for localization of 

vehicles are described in [7]. These sensors and techniques 

are divided into absolute and relative localization. 

Dead-reckoning sensors, such as inertial navigation (INS), 

attitude sensors, digital compass, Doppler-effect sensor 

(DVL) are relative sensors of localization in space.  

The position of the vehicle in the world is given by the sum of 

successive estimated position differences, leading to a 

position error that grows without bounds. 

In the absolute localization at each instant of time the 
position of the vehicle in the world is estimated. Some 

methods of absolute localization are based on active beacons, 

such as acoustic beacons LBL (Long baseline), ULBL (Ultra 

long baseline) and SBL (Short Baseline) and Global 

Positioning System (GPS or DGPS). 

The methods based on acoustic beacons and the GPS 

involve high errors of localization [7]. Then the need of 

terrain-based navigation methods, which combine the relative 

and absolute navigation methods and the landmarks existing 

on the sea environment, appears. 

B. SLAM-Simultaneous Localization and Mapping 

The terrain-based navigation [8], based on natural 
landmarks has essentially two phases: 

-Construction map, knowing the localization of the vehicle 

in the world by other methods of localization. 

-Localization of the vehicle based on the world map 

constructed a priori. 

The aim of this work, using side scan sonar and using the 

sensors of attitude and dead-reckoning installed on the 

vehicle, is join the two stages of the terrain navigation on a 

single stage, allowing the vehicle to construct the map and to 

locate itself simultaneously. This is a problem of SLAM 

(Simultaneous Localization and Mapping) or CLM 

(Concurrent Localization and Mapping). 
SLAM and CLM, both problems have the same objective 

and give true autonomy to the AUV. The problem of SLAM 

is treated in [6], applied on AGVs (Autonomous Guided 

Vehicles), while CML is treated in [8] on AUVs. 

With the resolution of SLAM/CML the AUV will have 

autonomy and can be launched on missions to search and 

collection of data with minimal preparation, without bounds 

of navigation and with a great certainty of position estimation. 

To make the interconnection of relative navigation 

methods, dead–reckoning, with observations obtained by 

sonar, a method as the Kalman filter is needed. 
The Kalman filter, more precisely EKF (Extended Kalman 

Filter), described in [10], consists of a Kalman filter in which 
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the state vector consists not only on information about the 

vehicle (its position), but also on information detected and 

identified from natural landmarks. Thus, the estimation will 

be not only the vehicle but also the environment, which in 

fact results on a SLAM problem. The approach described here 

follows the ideas from [6], [8], [9], [11] and [12] where 

Kalman filters are also employed.  

III. SONAR DATA 

A. Sonar, SOund Navigation And Range 

Sonars can be used to obtain acoustic images of the sea bed 

allowing the extraction an identification of natural landmarks. 

The forward-look sonar makes several observations of the 

environment causing overlap of the sea bed [8]. This sonar 

provides little information and the measurement noise is high, 
generating acoustic images of poor quality. 

An image obtained by the acoustic side scan sonar is the 

echo of lines of force in time, equally spaced between them. 

In [8], is said that the acoustic images obtained by side scan 

sonar have higher quality than forward look sonar images. 

  
a) b) 

Fig. 1 a) Forward-look scan. b) Side scan Scan. 

     In both them, [8] and [9], the sonar type chosen to 

development of the work was the side scan sonar. In this work 

the chosen sonar was also side scan sonar, more precisely, the 
Imaginex Sportscan, that is shown in Fig. 2. 

 

Fig. 2 Side scan Imagenex Sportscan 

The multibeam corresponds to the sonar type in which the 

quality of acoustic image obtained is higher than the both 

others. The information collected is larger, which allows 
terrain-based navigation of higher quality. 

The multibeam sonar, gives a three-dimensional pictures of 

the environment. It is composed by an array of sonars (multi-

beam), arranged in the same direction and angle of incidence 

fixed, known and that differs between them. 

B. Obtained Data by Analisys of Acoustic Image 

For a feature located at the sea floor, the analysis of an 

acoustic image provides important data required for the 

navigation procedure described here. That data are: 

-The size of the no-echo zone, (H) allows us to know the 

height above the floor at which the AUV is. 

-A sum of no-echo zone with the area of the bottom echo 

and the target, (H + r), allows to know the distance between 

the submarine and the target. 

-A shadow zone of the target (S), where there is no-echo, 

lets us know the height of the target. This height is given by 

the expression:  

 (1) 

All these characteristics can be obtained by image 

processing algorithms. 
The algorithms of segmentation and features extraction 

should be flexible and then be able to handle images whose 

quality is lower than the figures 3, a) and b). 

  
a) b) 

Fig. 3 a) Beam observation, Target values (H, r, h and s). b) Side scan 

ideal image. 

C. Acoustic Image extraction 

 

Fig. 4 Acoustic image acquired (left), sliding window (middle), features 

extraction (right). 

An example from acoustic image segmentation is shown in 

Fig. 4. In that case the acoustic image obtained (left) shows 

the perception of the sea bed. Is possible see when the echo 

from the floor appears. Each vertical line (slice of image) is a 

ping of 500 points that side scan acquired. The extraction of 

features, which in that case only correspond to sea floor, was 

made using a sliding window (Fig.4 middle) with fixed size. 
Using sliding window possible disturbances in image can be 

despised. Thus, in each sampling instant, the observation will 

be the new slice acquired by side scan, added to the others 

slices, according sliding window size.  

Thus, at each observation time, a sliding window is built 

for later segmentation and features extraction. 



The image extraction and segmentation results are shown 

by Fig.4 (right). The results obtained are the lines equations 

on the sliding window. It can be seen that all relevant lines 

are detected, such as sea floor, starboard and port, and also 

the lines corresponding to surface echoes. 

To obtain sea floor and surface echo lines, a sequence of 

image operations are applied. These operations are a bimodal 

threshold, for binary image result, followed by horizontal 

edge detection that can be a first or second derivate mask. 

Finally, the Hough transform is employed to obtain the 

equation lines. All these image methods and computational 
processes can be seen on [13], [14] and [15]. 

IV. NAVIGATION FILTERS 

A. Kalman Filter: State (East, South, Depth) 

To estimate the position of the vehicle two reference 

frames are considered: a static world fixed frame and a 

moving frame attached to the vehicle [16], as shown in Fig.5. 

 

Fig. 5 Absolute frame and AUV frame 

Considering a straight line feature characterized by a line of 

slope (m) and origin intersection (b), on sea bed, the process 

model of the filter will be given by a non linear system in 
continuous time. The state vector is: 

 (2) 

The linear speed of the vehicle only exists in two 

directions, east (e) and depth (h) axis. The kinematic model of 
the vehicle will be given by: 

, (3) 

where  is , and  is . Along this paper that 

notation will be used. 

The input vector u(t) and the Gaussian white noise w (t), 

with mean zero, associated with each input, are represented 

by: 

 (4) 

 (5) 

1. Sonar Observation: Feature Pipe. 

Each time instant, the vehicle, detect a point of the pipe on 

its frame. Then each observation is the point: 

, (6) 

where  and  are obtained through the acoustic image, and 

are shown in Fig.3 a).  is the angle that the sonar beam 

makes with the line orthogonal to the floor plan, Fig.8. 

The line equation in the world reference frame is equal to: 

 (7) 

The point  in world coordinates its equal: 

, (8) 

where  is the rotation matrix from the AUV to world frame. 

That matrix is given by: 

, (9) 

Thus, the coordinates of the world represented in the 

coordinates of the submarine are: 

 (10) 

Through (7), (8), (9) and (10) equations, the estimated  is 

given by:  

 (11) 

The estimated , is equals to: 

 (12) 

So the estimated value of  is given by the following 

expression: 

 (13) 

The observation noise is represented by a zero mean vector 

and covariance error R: 

 (14) 

, (15) 

where  and  are due to error measurement of the AUV 

yaw and pitch, and  and  are derived from the 

measurement of  and  in the acoustic image. 

Therefore, the observations of the filter are given by the 
expression: 

 (16) 

B. Kalman Filter: State (Distance, Depth) 

The vehicle state will be defined by the distance of the 

vehicle to the feature, by the depth coordinated of the vehicle, 

i.e. the relative height to the sea floor, and the orientation of 

the feature in the world reference frame. Thus, the state will 

be:  

 (17) 

Taking into account the sea currents in the east and south 

axis and , the speed of vehicle (  and , 



assuming a roll (Φ) close to zero, and finally taking into 

account the yaw (ψ) and pitch (θ) angles, we have: 

 (18) 

 (19) 

The system input is  and  is the white noise. There 

are the following vectors: 

 (20) 

 (21) 

 (22) 

 

Fig. 6 Distance (D) between AUV and pipe.  

Through figure 6, the approximation speed from the vehicle 

to the pipe can be computed, and is given by: 

 (23) 

1. Sonar observations: Feature pipe 

In this case, we use three observations: the minimum and 

maximum distance of the vehicle to the pipe,  

and finally the detected distance, in the acoustic image, 

between vehicle and the sea bed . 

 

Fig. 7 Three observations, Dmin, Dmax and h. Size of pipe in the image. 

The minimum distance is related to the system state as 

follows: 

 (24) 

The maximum distance, taking into accounts that the sonar 

ever sees approximately a circle, is related with the state the 

following way: 

 (25) 

Finally, the third observation  already was computed in 

previous (13). 

The expression for , also already been computed (11), in 

order to other states,  it will be again 

compute, now in order to  states. 

 (26) 

Also  was been calculated in previous (12), but it differs 

when radius pipe, , is considered. So  come: 

 (27) 

Thus, the filter observation is given by: 

 (28) 

2. Sonar observation: Feature wall 

The wall will be seen by the sonar as a growing strength 
echo from the minimum distance between the submarine and 

the wall. 

 

Fig. 8 Two observations, Dmin and H, when the feature is a wall. 

The filter observation will be formed by the following two 

characteristics: 

 (29) 

First observation, , is determined geometrically by 

examining figure 9: 

 

Fig. 9 Distance (D) between AUV and wall.  

Resulting in: 

 (30) 

V. AUV GUIDANCE AND CONTROL 

To assess the performance of the developed navigation 

algorithms, we simulated the whole system with synthesized 

acoustic images. AUV guidance and control loops were 

designed to ensure that the AUV could follow the detected 

feature. 

The fundamental aim is to make the vehicle follow a path 

parallel to the feature, either the wall or pipe, at a given 

reference distance Dref. The output of the control is the yaw 
rate. 



The control consists of two PIDs, the first is function of the 

distance  while the other PID is function of 

difference between the feature and yaw vehicle angles  

. The two PIDs have therefore contrary effects; one 

tends to increase the relative angle between vehicle and 

feature. The other tends to decrease this angle. Thus, the 

second PID is of lower magnitude than the first. 

A. Determination of control gains 

The system is not linear and that prevents us from 
obtaining the control gains in the same way as the linear 

systems are obtained.  

Nonetheless, since the fundamental purpose for this paper 

is not the application of guidance laws, we followed a 

somehow empirical procedure for the determination of the 

control gains. 

For different speeds of vehicle motion, the path control 

should be higher when the linear speed is higher for the same 

vehicle behavior and trajectory. 

The demonstration of this result is made below. The yaw 

rate is given by: 

, (31) 

where  is the path followed, and  is the linear speed of the 

vehicle. Then: 

, (32) 

where R is the radius of curvature of the vehicle trajectory. 

Thus, for a given curvature, the speed of rotation of yaw will 

grow proportionally with the linear speed of the vehicle. 

The control only enters into effect when distance between 

the feature and the vehicle it is below a certain threshold . 

For greater distances than , the vehicles approaches the 

features with a predefined angle . Thus, the initial value of 
the yaw rate control is given by: 

, (33) 

where  is the vehicle linear speed. 

Considering only the distance proportionally 

constant,  equals to zero, for a desired curvature equals 

to :  

 (34) 

Considering now the equation (33), and constant 

proportional to distance (34), the angle constant proportional, 

for a desired curvature of , is: 

 (35) 

So the expression of control path is given by: 

 (36) 

VI. SIMULATION RESULTS 

A. Kalman Filter: State (Distance, Depth) 

The simulation time corresponds to a displacement of the 

vehicle during 3 minutes. In acoustic sensor and the image 

obtained is introduced random error with mean zero like the 

reality.  

The sensors simulated are the digital compass that 

measures the yaw, pitch and roll of vehicle on the world 

frame.  

TABLE 1 

SIMULATION PARAMETERS. 

Feature Wall Pipe 

East/depth Speed (m/s) 0.5/0 1/0 

East/South Corrent(m/s) 0/0 0.3/0.3 

True Orientation (Degrees) 15 30 

Reference Distance (meteres) 7 6 

 

 

Fig. 10 Simulation when the feature is a wall, state error. It can be seen 

that error goes to a stationary small error. 

 

Fig. 11 Simulation when the feature is a wall, real and reference path that 

is a 7 meters parallel path between AUV and the feature. 

Also the sea currents measures were simulated, the east and 

depth speed. On all that measurements over-dimensioned 

errors are introduced. 

All vehicle sensors have a 20Hz sample rate, while the 

observation by sonar was simulated for a 5Hz sample rate. 

The distance error (between a wall and the AUV), Fig.10, 

in steady state is around . The error of maximum depth 

reached is about . The error of angle at steady state 

goes to . 



 

Fig. 12 Simulation when the feature is a pipe. Estimated State and the true 

state, both are close. 

Figure 11 shows the reference and real path that AUV 

follows. Can be seen that both are very close. This is due the 

fact of the described filter provide a good estimation.  That 

also proves that the dimensioned control works. 

The figure 12 represents the three states. The real state and 

estimated are very close. 

B. Kalman Filter: State (East, South, Depth) 

This filter was also simulated. The conclusions reached 

were that this is a type of filter that is not suitable for relative 
navigation. In fact, when the state variables are the east and 

south coordinates in the world reference frame, the co-

variance of these two states grows without bounds. As the 

error of the state is unbounded at a given instant time the 

accuracy of the estimated state is no reliable. This happens 

because the sonar provides information of relative distance of 

the vehicle to a feature, but does not provide information of 

the position at which the vehicle is in the feature. Only when 

the feature is parallel to east there is a guarantee that the error 

of estimation of the south state converges, but the east state 

error grows with no bounds. 

VII. PROJECT LIMITATIONS 

The acoustic image is sensible to disturbances caused by 

the water dirt or by particles suspended inside the water. This 

can make difficult image processing.  

When the goal is follow a parallel path at a reference 

distance from a feature the sonar need to see for all instants of 

time the feature. Thus, the sonar should never lose the feature 

in the image. 
When the objective is control the vehicle trajectory based 

on image seeing provided by sonar all should be autonomous, 

what requires well structured environments. 

VIII. CONCLUSIONS 

This paper describes a method for the estimation of the 

position of the vehicle and simultaneous map building. The 

method is based on Extended Kalman Filter. 

Positioning data is provided by side scan sonar and 

environment observations from two different features of the 

marine environment are considered: a pipe and a wall. This 

paper shows how can be integrated the information from the 

sensory part of the vehicle, which makes successive errors 

and leads the estimation state error to a unbounded error, with 

the observation of the environment, used to reduce the error 

of estimation, ever that an observation are obtained. 

 The control for the vehicle follow a path parallel to the 

feature is successfully applied on simulation. 

This article demonstrated the operation of two filters, and 

concluded that one of them is suitable for relative navigation 

and another not. Thus, the filter in which the vehicle state is 

the distance to the feature, the distance to the sea floor and 

orientation of the landmark, is the ideal filter and ensures a 
good estimation. 

An interface in C++ has been developed for 

communication between the AUV and Imagenex SportSan 

sonar. In future it is intended to apply the filter to the AUV 

MARES as the control path, and for that real acoustic images 

with real features will be obtained, processed and segmented 

in order to obtain the observations and features values. 
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